Schwarz (1843 – 1921)

1242847328 schwarz Schwarz (1843   1921)Hermann Amandus Schwarz, 1843 yılında Almanya’da doğdu. Berlin Üniversitesi’nde Weierstrass’ın en parlak öğrencilerinden biriydi. Kendisini, özel ilgisi ve Weierstrass’ın dersleriyle çok iyi yetiştirdi. İyi bir analizci oldu. Çok parlak bir zekası ve keskin bir görüşü vardı. Öğretmenleri kendisini çok beğenirlerdi. Diğer yandan da, çok değişik görüşlü ve orijinal bir matematikçiydi. Bu nedenle de, matematiğin birçok dalında eserler verdi. Minimum yüzeyler kuramı ve fonksiyonlar kuramı, bu çalıştığı sahalardan yalnız ikisidir. 1897 yılında Berlin’de Weierstrass’ın yanında profesör oldu. Burada, çok sayıda eser verdi. Özel olarak Weierstrass’tan çok yardımlar gördü. Weierstrass onu hep desteklerdi. 1921 yılında öldü.

Laplace (1749 – 1827)

1242844970 laplace Laplace (1749   1827)“Doğanın tüm olayları birkaç değişmeyen kanunun matematik sonuçlandır” diyen Marquis Pierre-Simon de Laplace, 23 Mart 1749 günü bir köylü çocuğu olarak dünyaya geldi. Ailesi, Fransa’nın Calvados ilinin Beaumont-en-Auge Kasabasında yaşıyordu. Laplace’ın ilk çocukluk yılları hakkında çok az şeyler biliniyor. Onun çocukluğunu ve gençliğini saran karanlık yılları, kendini Beğenen davranışlarından ileri geliyordu. Kökeninin fakir bir köylüden gelişi onun yüzünü kızartır ve sürekli onu gizlemek için elinden geleni yapardı. Kısaca, bir köylü çocuğu olarak doğmadı ve kendini beğenen birisi olarak ölmedi cümlesi ile yaşam öyküsü özetlenebilir. Her ne duyguysa, Laplace köylü olması ve ailesinin fakir olmasından bir aşağılık duyardı. Tüm yaşamı boyunca bu duygu ve düşünceden kendisini kurtaramadı. Bu da onun zayıf bir yanıydı.
Laplace, ilk yeteneğini köy okulunda gösterdi. Bu başarısı zengin komşularının sıcak dikkatini çekti. Zengin komşularını görmesi belki yukarıda sözünü ettiğimiz duyguları daha küçük çocukken şuur altına alıp baskı kurmuş olabilir düşüncesi akla gelmektedir. İlk başarılarını, teolojik tartışmalarda elde ettiği söylenir.
Laplace, kendisini çok erken matematiğe verdi. O zaman Beaumont’ta askeri bir okul vardı. Laplace bu okula devam ediyordu. Söylendiğine göre, Laplace sonraları bu okulda bir süre matematik dersleri okutmuştur. Yine bir söylentiye göre, onun matematik yeteneğinden çok daha fazla hafıza yeteneğinin olduğu kanaati vardır. Bundan dolayı, Laplace on sekiz yaşına gelince zengin koruyucularının tavsiye mektuplarıyla Paris’in yolunu tuttu. Kendisinin yüksek yeteneğini biliyor, fakat bunda hiç şişme ve bir abartma göstermiyordu. Genç Laplace, kendine tam bir güven içinde Paris’e matematik dünyasını fethetmek için geldi.
Paris’te doğru d’Alembert’in evine gitti. Tavsiye mektuplarını gönderdi. Fakat kabul edilmedi. D’Alembert, büyük ve kuvvetli kimselerin önerilerinden başka bir varlıkları olmayan kimselerle uğraşmıyordu. Laplace, övmeye değer bir anlayışla her şeyi hissetti. Eve döndü ve d’Alembert’e mekaniğin temel kuralları üzerine bir mektup yazdı. Böylece, oynadığı oyunda başarılı olmuştu. D’Alembert’in onu görmek için gönderdiği çağrı yazısında şöyle yazıyordu. “Bayım, görüyorsunuz ki öneri mektuplarına hiç değer vermiyorum. Sizin bu tür övgü mektuplarına hiç gereksinmeniz yok. Siz kendi kendinizi daha iyi tanıttınız. Bu bana yeter. Size yardım etmek bana bir borç olsun.” Birkaç gün sonra Laplace, d’Alembert’in sayesinde Paris’teki askeri okula matematik öğretmeni olarak atandı. İşte bu sırada Laplace, Newton’un genel çekim kanununun güneş sistemine uygulaması adlı büyük eserini verdi.
Astronom matematikçi olduğu için, kendisine Fransız Newton’u denmiştir. Olasılıklar kuramının kurucusu gözüyle bakılabilir. “Bildiklerimiz çok değil, bilmediklerimiz çoktur” sözüyle alçak gönüllülüğünü göstermiştir. Matematiğe önem vermediğini, şöhret ve ün için değil de kendi arzularını yenmek için matematikle uğraştığını söyler. Dahi kimselerin buluşlarını veya yaşayışlarını incelemek ve kendisini onların yerine koyarak engelleri aşmak düşüncesindedir.
Yaptığı çalışmaların tümünün kendisine ait olduğunu ileri sürer. Bu söz doğru değildir. Örneğin, yazdığı “Gök Mekaniği” adlı şaheserinde, gelecek kuşaklara bunu, ben yarattım gibi bir izlenimi vermeyi ustalıkla kullanmıştır. Diğer matematikçilerden aldıklarına kaynak vermez, kendine yarayan ve dışarıdan aldığı şeyleri kendine mal etmeyi çok kurnazca becerirdi. Gök Mekaniği için gereken analiz bilgilerini Legendre’den almış ve adını bile vermemiştir. Yalnız Newton’un adı geçer.
Laplace, Lagrange’da değinilen üç cisim problemini güneş sistemi için düşündü. Newton’un çekim kanununu Güneş sistemine uyguladı. Gezegenlerin hareketlerinin Güneş tarafından belirlendiğini, devirli küçük değişiklikler hariç, gezegenlerin Güneşe olan uzaklıklarının değişmediğini ispatladı. O zaman yirmi dört yaşında olan Laplace için tarih 1773 yıllarını gösteriyordu. Bu başarısından dolayı Paris İlimler Akademisine üye seçildi. Yaşamının ve meslek hayatının ilk şerefini ve ödülünü almış oluyordu. Bulduğu matematik sonuçlarının büyük birçoğunu astronomide kullanmak için elde etti. Sayılar kuramı üzerinde bir süre çalıştı ve onu kısa bir zaman sonra bıraktı. Olasılıklar kuramı üzerinde çalışması yine onu astronomide kullanmasından kaynaklandı. Gök Mekaniği adlı yapıtı, yirmi altı yıllık, bir zaman sürecinde parça parça olarak yayınlanmıştır. Gezegenlerin hareketleri, şekilleri, gel-git olaylarını inceleyen ilk iki cilt, 1799 yılında çıktı. 1802 ve 1805 yıllarında iki cilt ve 1823 ile 1825 yılları arasında da beşinci cildi yayınlandı. Yalnız, bu eserlerde matematik kısımları pek açıklanmıyor ve yorumlardan da kaçınılıyordu. Hatta, matematik hesaplar için, “Kolayca görülür” deyimi kullanılıyordu. Aslında, bu kolayca görülür deyimi ters bir anlam da taşıyordu. Kendisi bile bu kolayca görülür dediği kısımları günlerce uğraşarak çözüyordu. Okuyucuları ve öğrencileri daha sonra bu deyim üzerinde haftalarca uğraşacaklarını bildiklerinden, homurdanmayı adet edinmişlerdi.

Isaac Newton (1642 – 1727)

1242845935 newton Isaac Newton (1642   1727)1642 yılında İngiltere’nin Woolsthrope kasabasında dünyaya gelen Newton’un en önemli buluşu, diferansiyel ve integral hesabı keşfetmesidir. Zaten Newton’u dünyada gelip geçmiş üç büyük matematikçiden biri yapan buluşu budur. İşin teknik yönü, üniversitelerde uzun uzun verilir. Bu nedenle, sadece adı bizim için şimdilik yeterlidir. Newton, bir ara teolojiye de ilgi duydu. Bu konuda bazı yorumları ve düşünceleri de vardır.
Newton, 1661 yılının haziran ayında Cambridge’deki Trinity College’e girdi. Giderlerinin bazılarını karşılamak için okulda bazı işlerde çalışıyordu. İç harp İngiltere’de tüm şiddetiyle sürüyordu. Önceleri yavaş, fakat sonraları çabuk olarak kendini toparladı ve çalışmalarına daldı.
Newton’un matematik öğretmeni Isaac Barrow (1630 – 1677), hem ilahiyatçı ve hem de matematikçi biriydi. Matematikte parlak fikirli olan Barrow, öğrencisinin kendisinden çok ileride olduğunu kabul ediyor ve 1669 yılında matematik kürsüsünü bırakıp sırası gelince, yerini o eşsiz büyük deha Newton’a bırakıyordu.
Barrow, geometri derslerinde kendine özgü yöntemlerle, alanları hesaplamak, eğrilere üzerindeki noktalardan teğet çizmek için yollar gösteriyordu. İşte bu dersler Newton’u diferansiyel ve integral hesabı bulmaya ve bu sahada çalışmaya yönelten ilk adımlardır.
Diferansiyel ve integral hesabın bulunmasında, değişken, fonksiyon ve limit kavramı kullanılmıştır. Fonksiyon kelimesini ilk kez Leibniz kullanmıştır. Bugüne kadar da bu sözcük değiştirilmemiştir. Limit fikrini ve kavramını Newton ve Leibniz kullanmıştır. Özellikle Newton bu sahada başarılı olmuştur. Her ikisi de çok yönlü olan bu dahiler, aynı zamanda birbirlerinden habersiz az çok farklılık gösteren yöntemleriyle diferansiyel ve integral hesabı bulmuşlardır.

Isaac Newton, 1727 yılında böbreklerindeki rahatsızlık yüzünden yaşamını yitirdi.


Haberler
Sizlerin yorumu bizler için çok önemli lütfen yorum yazınız



6.Sınıf konuları eklenmiştir...

Kümeler
Olasılık
Örüntüler
Çarpanlar ve Katları
Kalansız Bölünebilme
Toplama ve Çarpma
Ondalık Kesirler
Doğrunun Yolculuğu



7.Sınıf konuları eklenmiştir...

Olasılık
Çemberler
Tam Sayılar
Oran Orantı
Permütasyon
Koordinat Sistemi



8.Sınıf konuları eklenmiştir...

Fraktallar
Gerçek Sayılar
Kareköklü Sayılar
Histogram Oluşturalım
Üçgende Açı Kenar
Öteleme Yansıtma Döndürme