Archive for the ‘Matematikçiler’ Category

Pierre De Fermat (1601-1665)

1242846351 fermat 5 Pierre De Fermat (1601 1665)

 

Fermat 17 Ağustos 1601 yılında Fransa ‘nın Beaumont-de-Lomagne kentinde doğmuştur. Babası zengin bir deri tüccarı ve Beaumont-de-Lomagne ‘de ikinci konsolostu. Fermat ‘ın bir erkek kardeşi ve iki kız kardeşi vardı ve doğmuş olduğu bu kentte büyümüştü. Buna karşın yerel Fransiscan Manastırına gittiğine dair çok az kanıt vardır.

1920 ‘lerin ikinci yarısında, Bordeaux ‘ya gitmeden önce Toulouse Üniversitesinde eğitim görmüştür. Bordeaux ‘da ilk ciddi matematiksel araştırmalarına başlamış ve 1629 ‘da orada bulunan  bir matematikçiye Apollonius ‘un Plane loci adlı eserinin, kendisinin düzenlemiş olduğu bir kopyasını sunmuştur. Bordeaux ‘da  Beaugrand ile tanışmış ve bu sırada matematiğe olan ilgisini Fermat ile paylaşan Etienne d’Espagnet ‘e sunmuş olduğu “maximum ve minimum” üzerindeki önemli çalışmalarını üretmiştir.
Bordeaux ‘dan, üniversitede hukuk eğitimi aldığı Orléans ‘a gitmiştir. Medeni hukuk alanında derece almış ve Toulouse parlâmentosunda meclis üyesi olma hakkını kazanmıştır. Böylece Fermat 1631 yılından itibaren artık bir hukukçu ve Toulouse ‘da bir devlet memuru olmuştur ve sahip olduğu bu işinden dolayı, ona Pierre Fermat olan adını Pierre de Fermat olarak değiştirme yetkisi verilmiştir..
Fermat hayatının geri kalan kısmını Toulouse ‘da geçirdi, ancak orada çalıştığı kadar doğduğu yer olan Beaumont-de-Lomagne ‘da ve Castres yakınlarında bir kasabada da çalıştı. 14 Mayıs 1631 ‘deki atamasından itibaren parlâmentonun düşük meclisinde çalışmış ancak 16 Ocak 1638 ‘de daha yüksek bir meclise atanmış ve 1652 ‘de ceza mahkemesinin en yüksek makamına terfi ettirilmiştir. Meslek yaşamında elde edebileceği daha yüksek terfiler de vardı ancak terfiler çoğunlukla yaşça daha kıdemliler tarafından veriliyordu ve 1650 ‘lerin başlarında veba bu bölgeyi fena vurmuş ve bu kıdemlilerin çoğu ölmüştü. Fermat ‘ın kendisi de  vebaya yakalandı ve 1653 ‘de öldü.
Tabi ki Fermat Matematikle de meşgul olmuştu. Toulouse ‘ya gittikten sonra da Beaugrand ile matematik arkadaşlığını sürdürmüştür ancak burada yeni bir matematik arkadaşı daha kazanmıştır, o da Carcavi ‘dir. Carcavi de Fermat gibi bir meclis üyesidir, ancak onları yakınlaştıran ve aralarında paylaştıkları şey matematik olmuştur. Fermat Cercavi ‘ye matematik üzerine olan buluşlarını anlatmıştır.
1636 ‘da Cercavi işi dolayısıyla Paris ‘e gitti ve Mersenne ve grubuyla temasa geçti. Carcavi ‘nin, Fermat ‘ın düşen nesneler ile ilgili olarak buldukları ile ilgili açıklamaları Mersenne ‘in büyük ilgisini çekti ve Fermat ‘a bir mektup yazdı. Fermat 26 Nisan 1636 ‘da bu mektubu cevapladı ve Mersenne ‘e bazı hataları belirtmenin yanı sıra spiraller üzerindeki çalışmalarını ve Apollonius ‘un Plane loci adlı eserindeki düzenlemeleriyle ilgili açıklamaları da yazdı. Fermat ‘ın spiraller üzerindeki çalışmaları, serbest düşmede nesnenin izlediği yolun hesaba katılmasıyla motive edilmiş oldu ve Archimedes ‘in spirallerin altında kalan alanı hesaplamaya yönelik çalışmalarının genelleştirilmiş hallerinin metodlarını kullandı.
Bu ilk mektupta aynı zamanda Fermat ‘ın Mersenne ‘den, Paris matematikçilerine vermesini istediği iki tane maximum problemi de vardı. Bu Fermat ‘ın mektuplarının tipik bir özelliğiydi, kendisinin daha önceden bulmuş olduğu bir sonucu, başkalarının da bulmasını sağlamak için onlara meydan okuyacaktı….
Roberval ve Mersenne Fermat ‘ın bu ilk mektubunu ve diğerlerini gerçekten oldukça zorlayıcı buldular ve genellikle bilinen tekniklerle çözülemeyeceğini gördüler. Bunun üzerine Fermat ‘tan kullandığı metotlarını açıklamasını istediler ve Fermat Paris ‘teki matematikçilere  “bir eğrinin , maximum, minimum ve teğetlerini belirleme metotları” ‘nı, kendisinin yeniden düzenlemiş olduğu  Apollonius ‘un Plane loci adlı eserini ve yine kendisinin geometriye cebirsel yaklaşım -Introduction to Plane and Solid Loci yazılarını gönderdi.
Fermat, önemli matematikçiler arasında olma ününü çabuk yakalamıştı, ancak çalışmalarını yayınlama girişimi çoğu zaman başarısızlıkla sonuçlandı, çünkü Fermat hiç bir zaman çalışmalarının kusursuz bir forma sokulup tamamen bitirilmiş bir hale gelmesini istememişti. Yine de bazı metotları yayınlanmıştı, örneğin; Hérigone, en önemli çalışmalarından biri olan Cursus mathematicus adlı eserine Fermat ‘ın maximum ve minimum metotlarını eklemişti. Fermat ve diğer matematikçiler arasında giderek gelişen bu mektuplaşmalar malesef evrensel bir övgü bulamamıştır. Frenicle de Bessy, çözülmesini imkansız bulduğu Fermat ‘ın problemlerine karşı büyük bir kızgınlık duymuş ve bunun üzerine Fermat ‘a sert bir mektup yazmıştır. Fermat ‘ın  bu mektuba detaylı bir açıklama vermesine karşılık yine de Frenicle de Bessy, Fermat ‘ın kendisini aldattığını düşünmüştür.
1643 – 1654 yılları arasındaki dönem Fermat ‘ın Paris ‘teki meslektaşlarıyla ilişkilerinin zayıfladığı dönemlerdendi. Tabi bunun bazı sebepleri vardı. Birincisi, Fermat ‘ın işlerinin yoğunluğunun  onun matematiğe fazla zaman ayırmasını engellemesiydi. İkincisi ise 1648 yılından itibaren Toulouse ‘u ciddi bir biçimde etkileyen Fransa ‘daki sivil savaştı ve sonuncusu ise Toulouse ‘daki hayatta ve tabii ki Fermat ‘ın hayatında ölümcül izler bırakan 1651 vebası. Buna rağmen yine de Fermat bu dönemde sayılar teorisi üzerinde çalışmıştı.
Fermat çoğunlukla sayılar teorisi üzerindeki çalışmalarıyla, özellikle Fermat ‘ın son teoremi (Fermat ‘s Last Theorem ) ile bilinir. Bu teorem şu şekildedir;

n>2 için xn + yn = zn eşitliğini sağlayan sıfırdan farklı x, y ve z tamsayıları yoktur.

Fermat, Diophantus ‘un Arithmetica adlı eserinin Bachet tarafından yapılan çevirisinin kenarına şunları yazdı; ” Gerçekten de kaydadeğer bir ispat buldum ancak bunu kitabın kenarına sığdırmam mümkün değil”. Bu köşe notu ancak Fermat ‘ın oğlu Samuel ‘in 1670 yılında Diophantus ‘un Arithmetica’sının Bachet çevirisinin babasının notlarını da içeren yeni bir baskısını yayınlamasından sonra bilinmeye başlandı.
Bugün kesin olmamakla birlikte Fermat ‘ın bu ispatının yanlış olduğuna inanılmaktadır. Fermat ‘ın bu iddiası 1993 Haziranında İngiliz matematikçi Andrew Wiles tarafından ispatlandı, ancak Wiles bir süre sonra bazı problemler ortaya çıkınca, ispatını bulduğuna dair iddiasını geri aldı. 1994 Kasımında ise tekrar ,şu an bilinen, ispatı bulduğunu açıkladı.
Fermat ‘ın Paris ‘li matematikçilerle mektuplaşması 1654 yılında Etienne Pascal ‘ın oğlu Blaise Pascal ‘ın, Fermat ‘tan “olasılık” hakkındaki fikirlerini açıklamasını rica eden bir mektup yazmasıyla tekrar başladı. Aralarındaki kısa mektuplaşma “olasılık teorisi” ni ortaya çıkardı ve bu sebeple bugün bu teoriye, bu iki matematikçinin ortaklaşa teorisi olarak bakılmaktadır. Durum her ne kadar böyle olsa da Fermat, konuyu “olasılık” tan “sayılar teorisi” ne çevirmeye çalıştı. Pascal bununla hiç ilgilenmedi ancak Fermat bunu farketmeden Carcavi ‘ye şunları yazdı;

Dahiliklerine gerçekten büyük saygı duyduğum Bay Pascal ‘a fikirlerimi açıkladığım  için çok büyük mutluluk duyuyorum. İkiniz de bu baskının sorumluluğunu üstlenebilirsiniz, kısa açıklamalar ve eklemler yapabilirsiniz. İşlerim çok yoğun olduğundan dolayı üzerimden büyük bir yük almış olursunuz.
ancak Pascal Fermat ‘ın bu çalışmalarını yine de yayınlamıyacaktı. Bunun üzerine Fermat çalışmalarının yayınlanması ile ilgili bu ani fikrinden yine vazgeçti. Fermat zor problemleriyle her zamankinden daha da ileri giderek;
Fransız, İngiliz, Hollanda ‘lı ve hiçbir Avrupalı matematikçi tarafından çözülemeyen iki problem Bay Fermat tarafından ortaya atılmıştır..
Şeklinde bir açıklama yaptı. Fermat ‘ın problemleri bir çok matematikçinin Sayılar Teorisi ni önemli bir konu olarak düşünmesinden dolayı fazla ilgi görmedi. Ancak Bu problemlerden ikincisi (N bir kare değil iken  Nx2 + 1 = y2 ifadesinin tüm çözümlerini bulunuz, şeklinde olan problem)   Wallis ve  Brouncker tarafından çözüldü ve bu çözüm sırasında continued fraction konusu daha da geliştirilmiş oldu. Frenicle de Bessy belki de Sayılar Teorisi ‘ne ilgi gösteren tek matematikçiydi, ancak ne var ki o da Fermat ‘a bu konuda destek olacak kadar bir matematik yeteneğine sahip değildi.
Fermat, “iki küp ‘ün toplamı bir küp olamaz” adında başka problemler de ortaya atmıştı. ( Bu, Fermat ‘ın Son Teoremi olarak bilinen teoremin özel bir halidir. Bu da Fermat ‘ın genel kural için bulmuş olduğu ispatın yanlış olduğunun farkına vardığını gösteriyor.) Bu problemler şu şekildeydi: x2 + 4 = y3 ifadesinin iki, x2 + 2 = y3 ifadesinin ise tek tamsayı çözümü vardır.
1656 yılında Fermat Huygens ile mektuplaşmaya başladı. Bu mektuplaşmalar zamanla Fermat ‘ın sayesinde Sayılar Teorisi ‘ne doğru yönlenmeye başladı. Bu Huygens ‘in ilgisini çekmiyordu ancak Fermat bu konuda ısrarlıydı ve 1659 yılında Carcavi vasıtasıyla Huygens ‘e “New Account of Discoveries in the Science of Numbers” adlı eseri yolladı ve daha önce yapmadığı kadar çok metodunu ortaya koydu.
Fermat, sonsuz iniş ‘in metotlarını açıkladı ve bunu 4k+1 formundaki asal sayıların iki kare toplamı olarak yazılabileceğini kanıtlamada kullandı. Farz edelim ki 4k+1 formundaki bir asal sayı iki kare toplamı olarak yazılamasın, öyleyse 4k+1 formunda iki kare toplamı olarak yazılamayan daha küçük bir sayı vardır. Fermat ‘ın bu mektupta açıklayamadığı ise küçük sayının daha büyük olan sayıdan nasıl üretileceğidir. Bir varsayım Fermat ‘ın bu adımı nasıl gerçekleştireceğini bilmediğini söylemektedir, ancak şu bir gerçektir ki Fermat ‘ın metodunu açıklamada düşmüş olduğu bu çıkmaz, matematikçilerin ilgisini konu üzerinde yitirmesine neden olmuştur. Ve bu Euler ‘in bu konudaki problemleri tekrar ele alıp bu boşlukları doldurmasına dek sürmüştür.

Galois (1811 – 1832)

1242843036 galois Galois (1811   1832)

Fransız matematikçisi Galois, 1811-1832 yılları arasında yaşadı. Abel’in çağdaşı olan bu matematikçinin doğum ve ölüm tarihlerine bakarsanız 21 yıllık bir ömür sürdüğünü görür ve bu işte bir yanlışlık olduğunu düşünebilirsiniz. Hiçbir yanlışlık yok. Galois’nın hayatı Brezilya dizilerine konu olmaya aday şanssızlıklarla sürüp gitmiş ve 21 yılda tükenmiştir.
Yakınları kendisinden söz ederken, annesinin erkek huylu, cömert, şerefli, açık bir şekilde alaycılığa kaçan ve bazen de çelişkilerde karar kılan bir kadın gibi anlatılıyordu. Anne, 1872 yılında seksen dört yaşında öldü. Aklını ve hafızasını ölünceye kadar korudu. O da, kocası gibi zulme, haksızlığa karşı bir öfke, kızma ve hınç besliyordu. Babası gibi, annesinin bu duyguları Galois da da görülür. Bu duygu ve düşüncelerden Galois da kurtulamamıştır. Onun kısa yaşamında bu duyguların etkisi çok büyük olmuştur.
Abel yoksulluktan ölmüştü. Galois ise, başkalarının budalalığından ölmüştür. İlim tarihi, en kaba budalalığın dehaya karşı zaferine, Galois’nın çok kısa süren hayatı kadar kusursuz ve eksiksiz bir örnek vermemiştir. Burada bir noktaya dikkat etmek gerekir. Galois bir melek değildi. Çok taşkındı ve derisine sığmıyordu. Bu onun yaramazlığından değil de, zekasının kafasının içine sığmamasındandı. O parlak yeteneği, aleyhine birleşmiş koyu bir budalalıkla boğulup gitti. Galois’nın her davranışı, taşan zekası ve onun dahi kafasının istediği yönde yönlendirilmediğinden ileri gelmiştir.
Galois’nın ne anne ve ne de baba tarafından matematiğe karşı en küçük bir yetenek görülmemiştir. Galois’nın matematik dehası, birden bire delikanlılık çağına doğru çıkmıştır. Galois, merhametli, acıyan, seven ve hatta ağır başlı bir çocuk olmakla beraber, babası şerefine düzenlenen toplantılarda ortamın neşesine katılmasını bilir ve konukları eğlendirmek amacıyla şiirler ve karşılıklı konuşma yazıları yazardı. Fakat, beceriksiz, yeteneksiz ve anlayışsız öğretmenlerinin rahatsız etme, canını sıkma ve tedirgin etmeleri, onların sersem ve pek akılsız davranışları yüzünden Galois’nın bu atılımları da çok sürmedi. Onu da hemen körelttiler.
Galois, 1823 yılında on iki yaşında Paris’teki Louis le Grand Lisesine girdi. Lise, kapıları sürgülü ve pencereleri demirli bir hapishaneden farksızdı. 1823 Fransa’sı daha Fransız devrimini unutmamıştı. Yöneticilerin, insanların ve bazı güçlerin tuzakları ve karşı tuzakları, ayaklanmalar ve ihtilal söylentileri sık sık görülen olaylardı. Olaylar tam oturmamış ve huzursuzluklar devam ediyordu. Toplumun bu huzursuzlukları Galois’nın lisesine de yansıyordu. Cizvitlerin yönetimi yeniden ele almasını sağlamak amacıyla lisenin müdürünün planlar hazırlamış olmasından kuşkulanan öğrenciler, kilisede bile okumayı, kabul etmeyerek ayaklandılar. Müdür, öğrenci ailelerine bile haber vermeden suçlu diye kuşkulandığı öğrencileri okuldan kovdu. Galois, bunların içinde değildi. Bulunsa herhalde Galois’nın geleceği için daha hayırlı olurdu. Çünkü, Galois, o güne kadar kanunsuz ve keyfi yönetimin, yalnız kelimesini biliyordu. Artık O, harekete geçmiş, kendisini olayların içinde bulmuştu. Ölünceye kadar da bu iz onda kalacaktır.
Galois, annesinin ona verdiği temel eğitim ve öğretiminin yardımıyla öğrenimini çok iyi bir biçimde yürütüyordu. Böylece, öğrenimine çok iyi başladı. Sınıftaki tüm birincilikleri topladı.
Ertesi yıl 1824 tarihinde Galois’nın hayatında başka bir davranış daha görüldü. Edebiyata ve klasiklere önce uysallıkla çalıştığı halde, şimdi onlar canını sıkmaya, buna karşın matematik dehası uyanmaya başladı. Öğretmenleri sınıfta kalıp bir yıl daha okumasını istediler. Babası karşı koydu. Zavallı Galois, bitmek tükenmek bilmeyen edebiyat, Yunanca ve Latince derslerine yeniden başladı. Orta derecede ve dikkatsiz bir öğrenci olarak tanındı. Son söz yine öğretmenlerinin oldu ve Galois sınıfta kaldı. Ne yazık ki, bu dahi çocuk, zekasının kabul etmediği eski ve onun için anlamsız şeyleri tekrarlamak zorunda kaldı. Yorulduğu ve zevkini kaybettiği için derslerine karşı hiç bir gayret, çaba ve ilgi göstermiyordu. O zaman diğer derslere göre matematiğe çok önem verilmezdi. Matematik dersi bazen yapılır, bazen de hiç yapılmazdı. Galios, kendisinin bir matematikçi olduğunu nereden bilebilirdi?
Galois, düzenli matematik derslerine bu derin sıkıntı yılında başladı. Bu zaman, Legendre’nin güzel geometrisinin moda olduğu bir sürece rastlar. İyi bir öğrenciler bile Legendre’nin bu geometrisini tümüyle anlayabilmek için en az iki yıl uğraşmaları gerektiğine inanıyorlardı. Galois, Legendre’nin geometrisini bir korsan kitabı okur gibi, baştan sona kadar bir nefeste okuyarak bitirdi ve bu kitaba hayran kaldı. Bu kitap, bir işçinin elinden çıkmış bir el kitabı değil de, bir usta elinden çıkmış bir şaheserdi. Bir kere okunması, bir çocuğa en açık biçimde geometriyi öğrenmesini sağlıyordu. Galois’nın cebire karşı tepkisi bambaşka oldu. Cebirden nefret etti. Onun bu tepkisi, onun ruh yapısını bilen için haklı bir gerekçeydi. Çünkü, Galois’yı gayrete ve çalışmaya getirecek Legendre düzeyinde usta bir cebirci yoktu. Cebir, okul kitaplarından başka bir şey değildi. Bu, Galois’ya cebir bilgisinin verilmeyişinden kaynaklanıyordu. Büyük bir matematikçiyi eserleriyle tanımasını öğrendikten sonra, kendi kendine bir yol aramak görevini üstüne aldı. Cebir öğrenmek için çağın büyük matematikçisi Lagrange’a başvurdu. Sonra Abel’i okudu. Bu sırada on dört on beş yaşındaki bir çocuğun olgun matematikçilere özgü yazılmış cebir analizinin şaheserlerini, denklemlerin sayısal çözümlerine ait çalışmaları, analitik fonksiyonlar kuramını ve fonksiyonların diferansiyel hesaplarını birer birer okuyarak yutuyordu. Artık okul ödevleri onun için küçük şeylerdi. Genç dahiye gündelik dersler adi bir iş gibi geliyordu. Gerçek matematik için bu dersler faydasız ve hiçte gerek yoktu.
Kendisinde matematik yeteneğinin olduğunu fark edince, cebirsel analizin büyüklerinin yaptıklarını ve kendi düşündüklerini karşılaştırdı ve ileri atıldı. Annesi bile bunun farkında değildi. Fakat oğlunu biraz garip buluyordu. Lisede öğretmenleri ve arkadaşları üzerinde korku ve öfkeyle karışık garip bir duygu bırakıyordu. Öğretmenleri sabırlı ve iyi insanlardı. Fakat, oldukça dar görüşlü kimselerdi. Yıl başında “Çok uslu ve tatlı, iyi özellikleri bol” bir öğrenci diye sözü edildi. Fakat, Galois’da garip bir halin olduğunu da ekliyorlardı. Bu olay doğrudur. Çünkü, Galois sıradan bir zekaya sahip bir öğrenci değildi. İçine sığacak türde biri olması olanaksızdı. Galois için, Hiçte fena çocuk olmadığı, fakat “orijinal ve acayibin biri, her zaman muhakemeci, mantıkçı” olduğu sözleri de yine o eski kayıtlarda vardır. Arkadaşlarına takılmaktan zevk aldığı da ekleniyordu. Yıl sonundaki kayıtlarda yine, “Garip hallerle arkadaşlarını darılttığı ve karakteri içinde kapanmış bir şeyi olduğu” yazılıyordu. Daha ileri, öğretmenleri onu, “Son derece hırslı ve orijinal bir davranış takınmak” la suçluyorlardı. Buna karşın, bazı öğretmenleri Galois’nın iyi bir öğrenci olduğunu ve özellikle matematikte çok başarılı olduğunu kabul etmişlerdi. Yalnız bir kişi, Galois’nın matematikte olduğu kadar, diğer derslerinde de dikkate değer bir öğrenci olduğunu söylüyordu. Bu iyi niyet karşısında kalan Galois, edebiyat derslerinde de dikkatli olup şansını deneyeceğini söylediyse de, içindeki matematik aşkı hürriyetine kavuşmak için tutuşuyordu.
Galois, on altı yaşında, çok önemli buluşlara hazırlandığı bir sırada matematik öğretmeni Vernier, sanki tavuğun yeni çıkardığı yavrusunu kapacak olan kartaldan korur gibi Galois üzerinde titriyordu. Vernier, Galois’nın yöntemli çalışmasını istiyor, fakat öğrencisi bu öğütleri dinlemiyordu.
Galois, Ecole Polytechnique’in sınavlarına girdi. Sivil ve asker mühendislere dünyanın en iyi matematik ve ilim bilgisi vermek amacıyla ihtilal yasalarına göre Monge tarafından kurulmuş olan bu büyük okul, Galois’yı kendisine fazlasıyla çekiyordu. Bu okulda önce matematik hırsını tatmin edecek, burada matematik alanında kendini gösterecekti. Daha sonra, hürriyet aşkının doyacağını umuyordu. Çünkü, burada büyük kimseler, enerjik ve cesaretli Polytechnique’liler bulunuyordu. Bu okuldan çok şey bekliyordu.
Galois, Polytechnique’in sınavına girdi ve kazanamadı. Bu başarısızlığa sersemce bir haksızlığın neden olduğunu bilen sadece kendisi değildi. Hatta, arkadaşları bile bu başarısızlıkla şaşkına döndüler. Zaten Galois’nın matematik dehasını bilen ve onu takdir eden arkadaşlarıydı. Tüm suçu sınav jürisine yüklediler. O sırada bu okula giren adaylarla ilgili bir dergi çıkaran Terquem, okuyucularına, Galois’nın başarısızlığıyla ilgili tartışmanın henüz kapanmadığını hatırlattı. Bu başarısızlığı ve başka bir yerde, sınav jürisinin akıl erdirilemeyen kararlarını yorumlayan Terquem şunları yazıyordu; “Yüksek zekalı bir aday daha düşük zekalı sınav jürileri tarafından döndürülmüştür. Ben bir barbarım. Çünkü onlar beni anlamıyorlar “. Galois’ya gelince, başarısızlığı onun için öldürücü bir darbe olmuştu. Kendi içine kapandı. Bu sınavın acısını hiç bir zaman unutamadı.
1828 yılında Galois on yedi yaşındaydı. Bu, onun hayatında büyük bir yıl oldu. İlk kez onun dehasını anlayan değerli bir matematik öğretmeniydi. Adından söz edeceğimiz kişi, Louis Paul Emile Richard (1795-1849), Louis le Grand öğretmeniydi. Richard, dürüst bir eğitimciydi. Kendi öz çıkarları için her şeyi uygun gören bu adam, öğrencisinin geleceği söz konusu olunca hiçbir özveriyi esirgemeyen değerli biriydi. Bu sırada bazı matematikçiler de vardı. Öğretmenlik hevesi içinde, eserlerini yayınlaması için onu sıkıştıran dostlarının öğütlerine karşın, kendini tümüyle unuttuğu da olurdu.
Richard, ayağına gelen kısmetin ne olduğunu ilk bakışta anladı. Karşısındaki çocuk, Fransız’ların Abel’iydi. Galois’nın bazı zor problemlere karşı verdiği orijinal çözümleri sınıfta açıklamaktan gurur duyuyor ve bu insan üstü öğrencinin Polytechnique’e sınavsız kabul edilmesini gereken her yerde söylüyordu. Richard, Galois’ ya birincilik ödülünü verdi ve raporuna şunları yazdı. “Bu öğrenci, arkadaşlarına göre açık bir üstünlük göstermektedir. Matematiğin yalnız en zor taraflarına çalışmaktadır.” Bu söz, gerçeğin tam kendisiydi. Galois, on yedi yaşında, denklemler kuramında her zaman hatırlanacak olan ve sonuçları bir yüzyıldan fazla bir zaman sonra bile tüketilemeyen keşifler yapıyordu. Galois, 1 Mart 1829 günü, sürekli kesirlere ait ilk çalışmasını yayınladı. Bu çalışma, onun ileride başaracağı büyük işler hakkında bir fikir vermemekle beraber, hiç olmazsa, basit ve sıradan bir öğrenci olmadığını ve yaratıcı bir matematikçi olduğunu göstermeye yeterdi.
O sırada, Cauchy Fransız matematikçilerinin başında geliyordu. Pek çok yayını ve keşifleri olan Cauchy, yayın sayısı bakımından Euler ve Cayley’den sonra geliyordu. Cauchy, eserlerini genellikle çabuk ve doğru yazardı. Bazen unutkanlıkları da oluyordu. Fakat, bu kez yaptığı unutkanlığı Abel ve Galois’nın felaketi oldu. Onların canına kıydı. Abel için Cauchy kısmen suçlu kabul edilebilir. Fakat, Galois için affedilmez bir unutkanlığın tek sorumlusudur.
Galois, on yedi yaşına kadar yaptığı buluşların önemlilerini, ileride Akademiye vermeyi düşündüğü bir çalışma için saklamıştı. Cauchy, bu çalışmayı Akademiye sunacağını söz verdiği halde, sonra bu sözü unutmuş ve daha kötüsü bu yazıyı kaybetmişti. Galois, Cauchy’nin bu söz verişini kendisinden bir daha duymadı. Cauchy, aynı davranışı Abel’e de göstermişti. Cauchy’nin bu tür davranışının kasıtlı olup olmadığını bilemiyoruz. Fakat, matematik tarihi için sadece onu suçlayabiliriz. Çünkü, Cauchy’nin bu davranışı, genç Galois için bir hayal kırıklığı oldu. Akademi üyelerine karşı beslediği hırçın nefreti tutuşturan ve içinde yaşamaya zorunlu tutulduğu budala topluma karşı vahşi bir kin şeklinde soysuzlaşmaya kadar vardıran bir dizi benzer felaketlerin ilki oldu.
Bu kadar açıkça dehası görülen genci, öğretmenleri anlamıyor, onun huzurla keşiflerini hazırlaması için bir ortam hazırlamadıkları gibi, huzurunu bozuyorlar ve boşuna verilen ödevlerle oyalayarak çileden çıkarıyorlardı. Uzun ve sıkıcı tektirler, ardı arkası kesilmeyen cezalarla da onu isyana ve karşı gelmelere yöneltiyordu. O yine bunlara bir yerde katlanıyordu. Kendisini büyük matematikçi olmaya yöneltiyor ve bu amaçla çalışıyordu.
Galois, on sekiz yaşında genç bir delikanlıyken, ikinci darbe kafasına indi. Galois, ikinci kez Polytechnique’e başvurdu. Sonuç yine beklendiği gibi çıktı. Galois sınavı kazanamadı. Şansını son bir Kez daha denemişti. Okulun kapısı artık kendisine sürekli kapanıyordu. Galois’yı sınav yapan kimseler gerçekten de ondan çok daha geride kimselerdi.
Galois’nın bu sınavı dillere destan oldu. Her yerde bu sınavın sonucu konuşuluyor ve bu sınavdan söz ediliyordu. İşin duygusal yanı böyleydi. Fakat, olanlar zavallı Galois’ya olmuştu. Galois’nın en büyük özelliği, hemen hemen tüm hesapları ve hesaplamaları zihninden yapar ve sonucu söylerdi. Kalem, kağıt, tebeşir ve karatahta onun canını sıkıyordu. Keskin bir zekası ve düşünme yeteneği vardı. Fakat ne yazık ki, bu kez silgi ve tebeşiri özel bir amaçla kullandı. Sözlü sınavda jüri üyelerinden biri, matematik bir güçlük üzerinde onunla tartışmaya girişmek istedi. Jüri üyesi haksızdı. Fakat, direndi. Yetkili yerde de oydu. Okula kabul edilmemek düşüncesinin verdiği bir öfke ve ümitsizlik bunalımıyla ve sıkıntıyla silgiyi jüri üyesinin kafasına fırlattı ve … rezalet koptu. Yine olan zavallı Galois’ya oldu.
Galois’nın babasının acı ölümü ona son darbeyi indirdi. Bourg La Reine’nin belediye başkanı olması dolayısıyla, halkı papazlara karşı koruyordu. İhtiyar Galois, bu yüzden papazların çevirdiği dalaverelere hedef oldu. 1827 yılının gürültülü seçimlerinden sonra, bir papaz ihtiyar belediye başkanının şahsına karşı haysiyet kırıcı bir savaş açtı. İhtiyar adamın şiire karşı olan yeteneğini kötüye kullanarak, belediye başkanının imzasıyla Galois ailesinin birisine hitaben kirli ve pis mısralar bulunduran bir şiir yazdı ve bunları halk arasında dolaştırdı. Tam anlamıyla namuslu bir adam olan Galois’nın babası kendine eziyet etmek merakına tutuldu. Bir gün, karısının evde bulunmadığı bir sırada Paris’ten kaçtı. Oğlunun öğrenimini gördüğü lisenin iki adım ötesinde bir apartmanda intihar etti. Cenaze töreninde bazı karışıklıklar çıktı. Ona kızan bazı vatandaşlar cenazeye taş attılar. Bir papaz alnından yaralandı. Galois, babasının tabutunun görülmemiş bir patırdı içinde mezara indirilişine tanık oldu. O zamandan beri, her yerde nefret ettiği haksızlığın varlığından şüphelenerek, hiç bir zaman hiçbir yerde iyiliği göremedi.
Galois, Polyteohnique’teki ikinci sınavındaki başarısızlığından sonra, öğretmen olmak için Ecole Normale döndü. Yıl sonu sınavlarına kendi kendine çalışarak hazırlandı. Sınav jürilerinin kayıtları dikkate değerdir. Matematik ve fizik sınavlarından pekiyi notunu aldı. Son sözlü sınavında hakkında yazılmış şöyle bir not vardır; “Bu öğrenci fikir ve söylemek istediklerini her zaman açık olarak ifade edememektedir. Fakat zekidir. Dikkate değer araştırıcı bir zekası vardır.” Edebiyat dersinde en kötü yanıt veren öğrenci diye bir kayıt vardır.
Galois, 1830 yılı şubatında on dokuz yaşında kesin olarak üniversiteye kabul edildi. Çalışmak için bir köşeye çekildi ve çalışmalarıyla kendisini öğretmenlerine gösterdi. O yıl yeni konular üzerinde üç tane çalışma yaptı. Bu çalışmaları, cebirsel denklemler kuramı üzerinde büyük bir ilerlemeydi. Bu çalışmalarında, onun büyük kuramının bazı izleri görülür. Bu buluşlarını ve başka sonuçlarını da birleştirerek, İlimler Akademisine sundu. Bu eser, ancak çağın ileri gelen matematikçilerinin izleyip anlayabileceği düzeydeydi. En yetkili kimselerin fikirlerine göre, bu çalışma ödülü kazanacak tek eserdi.
Galois’nın bu yazısı Akademinin katipliğine geldi. Katip yazıyı incelemek üzere evine götürdü. Fakat, yazıyı okumadan öldü. Katibin kağıtları düzenlenirken Galois’nın bu çalışmasına rastlanılamadı. Galois da bir daha bu yazıdan söz edildiğini duymadı. Galois’yı avutacak başka bir söz daha yoktu. Koca deha, kötü bir düzen, anlayışsız insanlar, Cauchy’nin önem vermemesi ve tekrar eden kötü sonuçlar içinde yok olup gitmeyle karşı karşıyaydı. Bu olaylar, Galois’nın çökmüş ve kokmuş düzene karşı nefretini arttırıyordu.
İlk ihtilal gösterileri Galois’yı sevinç içinde bıraktı. Arkadaşlarını bu olaylara sokmak istediyse de, onlar çekimser kaldılar. Deneyimli müdür, öğrencilerden dışarı çıkmayacaklarına şerefleri üzerine söz aldı. Galois söz vermeyi kabul etmedi. Müdür, Galois’ya ertesi güne kadar beklemesini rica etti. Müdürün davranışı incelik ve sağduyudan uzak olduğunu kısa bir konuşmasıyla kanıtladı. Galois, öfkelenerek gece kaçmaya çalıştı. Duvar oldukça yüksekti. 1830 yılının son ayları oldukça karışık geçti. Galois, harekete geçmek için arkadaşlarına mektup yazdı. Arkadaşları Galois’yı desteklemediler. Bunun üzerine Galois da okuldan kovuldu.
Galois, parasız kaldığı için haftalık özel yüksek cebir dersleri vermek için ilan verdiyse de öğrenci bulamadı. Bu nedenle bir süre matematiği bıraktı. Halkın Dostları adı altında kurulan koruma kıtasının topçu kısmına gönüllü olarak girdi. Son bir ümitle ve Poisson’un önerisi üzerine, bugün Galois kuramı adı ile bilinen ve anılan ünlü çalışmasını İlimler Akademisine yolladı. Poisson raportördü. Ona göre çalışması anlaşılacak gibi değildi. Bu çalışmayı anlayabilmek için ne kadar zaman harcadığını da söylemiyordu. Gerçekten, Galois’nın kuramının anlaşılabilmesi için çok ileri düzeyde cebir bilgisi gerekmektedir. Bugün bu gerçek yine aynı düzeyini korumaktadır. O zaman, Galois’ nın yaptığı bu çalışmayı anlayan çıkmamıştı. Galois artık kendini ihtilalci politikaya verdi.
9 Mayıs 1831 gecesi, iki yüz kadar cumhuriyetçi, Kralın, Galois’ nın gönüllü olarak girdiği topçu kıtasının dağıtılması için imzaladığı bildiriye karşı koymak için bir ziyafette toplandılar. İhtilalci ve tahrik edici bir hava esiyordu. Galois, bir elinde kadeh ve bir elinde çakı ile ayağa kalktı ve kadehini Kral Louis Philippe’e diye kaldırdı. Bu hareketi yanlış anlamlara çeken arkadaşları onu ıslığa tuttular. Çakıyı da görünce, çakıyı Kralın hayatına karşı bir tehdit anlamına çektiler ve bağırarak alkışladılar. Galois, o anın kahramanıydı. Alkışlar kesilmiyordu. Topçular yürüyüş yapmak için dışarı çıktılar. Ertesi gün, Galois evinden alınarak tutuklandı. Sainte Pelagie’deki hapishaneye kapatıldı.
Galois’nın yakın taraftarları usta ve kurnaz bir avukat buldular. Bu avukat, sanığın aslında Louis Philippe’e, eğer “ihanet ederse” dediğini ispat etmeye çalıştı. Çakıya gelince, onu da açıklamada güçlük yoktu. Çünkü, Galois o sırada yediği pilicini kesmekle meşguldü. Yanında bulunanlar da, ıslıklara boğulan cümlenin sonunu işittikleri üzerine yemin ettiler. Galois bunu kabul etmediyse de, aile sahibi ve namuslu bir adam olan yargıç, sanığa, bu davranışı ile durumu düzeltemeyeceğini söyledi ve onu susturdu. Savunma çok ince hazırlanmıştı. Mahkeme heyeti de sanığın gençliğine acıdı ve on dakika aradan sonra Galois’nın suç işlemediğine karar verdi.

Galois, hürriyetini uzun zaman yine koruyamadı. Bir ay geçmeden 14 Temmuz 1831 günü bir tedbir olarak tutuklandı. Çünkü bu sırada cumhuriyetçiler bir gösteri yapmaya hazırlanıyordu. Hükümet bu hareketi büyüterek tebliğ halinde yayınlıyordu. Galois’nın ihtilal yapmasına engel olmuşlardı. Polisin onu yargılaması için bir gerekçe bulması güçtü. Tutuklandığında tepeden tırnağa kadar silahlıydı ama, polise hiç bir direnme göstermemişti. İki aylık bir bekleyişten sonra, bir gerekçe bulundu. Dağıtılmış topçu kıtasının resmi üniformasını taşıdığı için yargılandı. Bir arkadaşı üç ay ve kendisi de altı ay hapis cezası giydi. 29 Nisan 1832 gününe kadar hapishanede kaldı. Kız kardeşi, ağabeyinin geçirdiği bunca güneşsiz günden sonra sanki elli yıl daha çöktüğünü söylerdi.
O zamanlar hapishanelerde hafif bir disiplin vardı. Tutuklular ya avluda dolaşırlar ya da kantinde içerlerdi. Asık yüzlü ve daima düşünen Galois, içicilerin alayı ile karşı karşıya geldi. Bir tahrik sonucu bir şişe rakıyı bir solukta içti. İyi bir dostu ona ayılıncaya kadar baktı. Ne yaptığının farkına varınca da utandı. Galois bu hapishaneden de çıktı.
1832 yılında kolera salgını baş gösterdi. Galois’yı koleradan korunması gerekçesiyle 16 Mayıs 1832 günü hastaneye kapattılar. Sanki, Louis Philippe’in hayatı ile oynamış olan bu önemli siyasi kolera salgınına karşı bırakılmayacak kadar kıymetliydi. Hastaneye kapatılmıştı ama, dışarıdan gelenlerle görüşmek olanağı oldukça fazlaydı. Böylece, hayatında tek bir aşk olayı da geçirmiş oldu. Her şeyde olduğu gibi, bunda da bir felaketle karşılaştı. Aşağılık oynak bir kadın aklını çeldi. Sonunda Galois, aşktan, kadından ve kendinden iğrendi. Ona bağlı dostu Auguste Chevalier’ye şunları yazıyordu. “Dokunaklı cümlelerle dolu mektubun bana biraz rahatlık getirdi. Fakat geçirdiğim bu kadar şiddetli heyecanların izini nasıl yok etmeli? … Her şeyde hayal kırıklığına uğradım. Hatta aşkta, şan ve şerefte bile …” Mektup 25 Mayıs 1832 tarihliydi. Dört gün sonra Galois serbest bırakıldı. Dinlenmek ve biraz düşünmek için bir yazlığa gitmeye karar verdi.
Galois’nın 29 Mayıs 1832 günü başından geçen bir olay hakkında tam kesin bir bilgi sahibi değiliz. Bu olay hakkında iki mektubunda yazılanlar gerçek diye kabul edilen şeyleri akla getirmektedir. Galois, serbest bırakıldıktan sonra, siyasi düşmanlarıyla çekişmeye girişti. O zaman vatan severler düello (silahlı kavga) etmeye hevesliydiler. Zavallı Galois, bir şeref meselesi veya bir aşağılık kadın yüzünden düello etmek zorunda kaldı.
30 Mayıs 1832 günü şafak sökerken, Galois hasmıyla şeref meydanında karşılaştı. Düello tabancayla yirmi beş adım uzaklıktan yapılacaktı. Galois karnından vurularak düştü. Kör şans yine burada da onu buldu. Yörede doktor yoktu. Onu düştüğü yerde bıraktılar. Sabah saat dokuz sıralarında oradan geçen bir köylü tarafından Cochin hastanesine götürüldü. Galois öleceğini anladı. Karnındaki karın zarı iltihaplandı. Bu peritonit meydana çıkmazdan önce henüz aklı başındayken papazın son hizmetlerini kabul etmedi. Acaba babasının cenaze törenini mi hatırlamıştı? Aileden tek haberdar edilen küçük kız kardeşi göz yaşları içinde koşarak yetişti. Galois, tüm kuvvetini toplayarak onu teselli etti.
Galois, 31 Mayıs 1832 günü yirmi bir yaşında, sabahın erken saatinde öldü. Güneydeki mezarlığın fakirlerin gömüldüğü çukura gömüldü. Bugün, Evariste Galois’dan hiç bir işaret ve hiç bir kırık taş bile kalmamıştır. Onun kalan ve ölmez tek anıtı, hepsi altmış sayfa tutan kendi el yazması olan Galois kuramıdır.
Galois 28 Mayıs 1832 tarihli, “Tüm cumhuriyetçilere” başlıklı mektubunda şunları yazıyor:
“Ülkem uğruna ölmek olanağını bulamadığım için bana gücenmemelerini dostlarımdan rica ediyorum. Alçak bir aşiftenin ve bunun aldattığı iki kişinin kurbanı olarak gidiyorum. Hayatım sefil bir dedikodu içinde tükenecek… Gerçeği soğuk kanlılıkla dinleyecek durumda bulunmayanlara bu uğursuz gerçeği söylediğime pişmanım. Fakat, ne de olsa doğruyu söyledim. Mezara, yalanlarla lekelenmemiş bir vicdan, vatansever kanın temiz vicdanını götürüyorum. Allahaısmarladık! Halkın iyiliği için ne kadar yaşamayı isterdim… Beni öldürenleri affediyorum. Çünkü, iyi niyetli insanlardı.”
Galois, adı belirtilmeyen dostlara yazdığı başka bir mektupta şöyle diyor:
“İki vatansever beni düelloya davet etti. Bunu reddetmek benim için olanaksızdı. Ne sana, ne ona haber vermediğim için özür dilerim. Çünkü, rakiplerim hiç bir vatansevere haber vermemem için benden şerefim üzerine söz istemişlerdi. Göreviniz çok basittir. İstemeyerek çarpıştığımı, yani her uzlaşma çaresine başvurduktan sonra çarpışmaya zorunlu olduğumu ispat ediniz. Yalan söylemek, hatta bu kadar önemsiz bir şey için yalan söylemek hiç elimden gelir mi, söylersiniz. Kaderim, vatanın adımı öğrenmesi için bana yaşamayı nasip etmediğinden hatıramı koruyunuz. Dostunuz olarak ölüyorum.”

E. Galois:
Galois’nın yazdığı son sözler işte bunlardır. Öleceğini anlayan Galois bu gece son arzularını, vasiyetnamesini, ateşler içinde kağıda yazmakla geçirdi. Daha önce kafasında kurduğu büyük konuları aklında kaldığı kadarıyla topluyor ve kağıda döküyordu. Arasıra yazıyı kesiyor ve kenara birşeyler karalıyordu. “Vakit yok, vakit yok!” Yine çalışmasının devamını kötü bir yazıyla karalamaya koyuluyordu. Bu son ümitsizlik saatleri sırasında, gün ağarmadan önce yazdıkları, daha sonra gelecek matematikçileri, yüzlerce yıl heyecan içinde nefes nefese bırakacaktır. Matematikçileri uzun yıllar üzmüş olan problemin kesin çözümünü vermişti. Bir denklem hangi koşullarda çözülebilir? Sonunda bu da yaptıklarının bir parçasıydı. Bu büyük eserde, Galois gruplar kuramını parlak bir başarı ile kullanmıştır. Bugün, bu önemli ve oldukça soyut olan kuramın büyük öncüsü ve kurucusu ölmez Galois’dır.
Çılgınca yazılmış bir mektuptan başka, Galois, ilmi durumunu yerine getirecek olan şahısa, İlimler Akademisine sunulmak üzere kaleme aldığı bazı yazıları emanet etti. On dört yıl sonra, 1846 yılında Joseph Liouville, bu yazılardan bazılarını “Teorik ve Pratik Matematik Dergisi”nde yayınladı. Kendisi de orijinal ve seçkin bir matematikçi olan Liouville bu yayının girişinde şunları yazıyor.
“Evariste Galois’nın çalışmalarının temel amacı, denklemlerin köklerle çözülebilmesi koşullarıdır. Galois burada, dereceleri birer asal sayı olan denklemlere ayrıntılı bir biçimde uyguladığı genel bir kuramın temellerini atıyor. Daha on altı yaşından beri ve yeteneklerinin M. Richard adında çok iyi bir öğretmen tarafından desteklendiği Louis le Grand lisesinin sıralarında, Galois bu güç problemle uğraşmıştı.” Liouville daha sonra bu çalışmanın Akademiye gönderildiğini ve raportörlerin çalışmanın açık olmadığını belirterek kabul etmediklerini anlatır. “Aşırı derecede bir kısa yazma hevesi ve oldukça kapalı yazması anlamayı oldukça zorlaştırmaktadır. Eseri inceledim ve kullandığı yöntemin tümüyle doğru olduğuna inandım. Ufak tefek bazı eksikliklerini tamamladım. Çalışmamın sonucunu görünce de büyük bir zevk duydum” diyordu.
Galois, son arzularını dostu Auguste Chevalier’e yazdı. “Analizde bazı yeni sonuçlar buldum… Yaptıklarımın doğruluğundan şüphem yok. Jacobi veya Gauss’tan, bu teoremlerin doğruluğu hakkında değil de, bu teoremlerin önemleri üstündeki düşüncelerini söylemelerini açıkça rica edersin. Eğer umduğum gibi çıkarsa, bazı kimselerin bu karışık örgüyü kendilerine kullanmaları için sökmeleri kalır. Seni hasretle kucaklarım.”
Zavallı Galois, hala kendisinin anlaşılması için nasıl da çırpınıyordu. Jacobi cömert ve şerefli bir kimseydi. Ya Gauss ne diyecekti? Daha önce Abel’e ne demişti? Cauchy veya Labatchewsky hakkında ne söylemeyi unutmuştu? Bu kadar acı bir derse karşın, Galois hala boş ümitlere kapılıyordu. Bu ümitleri ancak ölümünden tam on dört yıl geçtikten sonra Liouville tarafından anlaşılacak ve eseri yayınlanacaktı.
Böylece, dahi bir matematikçi çocuğun acı yaşam öyküsünü ve anlaşılmadan nasıl yok edildiğini gördük. Tüm öğretmenler, anneler ve babalar, karşınızdaki öğrencilerin her zaman bir Galois olabileceğini unutmayınız.

Dedekind (1831 – 1916)

1242839554 dedekind Dedekind (1831   1916)

 

Richard Dedekind, Gauss’un doğduğu yerde, 6 Ekim 1831 günü Brunswich’te doğmuştur. Richard, yedi yaşından on altı yaşına kadar doğduğu kentin Gymnasium’unda okudu. Erken yaşlarda matematik dehası pek görülmedi. Onun ilk aşkları fizik ve kimya olmuştur. Matematiğe, ilimlerin hizmetçisi gözüyle bakıyordu. Asıl yolunu bulmakta da gecikmedi. Daha on yedi yaşındayken, fiziğin kullandığı düşüncelerde birçok sakatlıklar keşfetti ve daha az eleştirilere uğrayan matematiğe döndü. Çünkü, onun attığı her adım sağlam olmalıydı.
1848 yılında, Gauss’un Caroline Kolejine girmiştir. Bu kolejde, analitik geometri, ileri cebir, diferansiyel ve integral hesabı ve yüksek mekaniği öğrendi. 1850 yılında Göttingen Üniversitesine girdiği zaman, ileri çalışmalar yapabilecek düzeyde ciddi bilgisi vardı. Buradaki öğretmenleri, sayılar kuramı üzerinde pek çok yazısı olan Moritz Abraham Stren (1807-1894), Gauss ve fizikçi Wilhelm Weber oldular. Bu öğretmenlerinden, diferansiyel ve integral hesap, yüksek aritmetik, en küçük kareler yöntemi, yüksek jeodezi ve genel fizik üzerinde sağlam temeller aldı. Buna karşın, burada da çok şeyler öğrenmediğinden yakınıyordu. Doktorasını verdikten sonra birçok konuyu öğrenmek için kendi kendine iki yıl çalıştı. Halbuki bu dersler, Berlin’de Jacobi, Steiner ve Dirichlet tarafından parlak bir şekilde okutuluyordu. Dedekind, 1852 yılında yirmi bir yaşındayken, Euler’in integralleri üzerinde kısa bir tezle Gauss’tan doktorasını ve ünvanını aldı. Tez kısa ve bağımsız gibi görülüyordu ama, sonuç hiçte öyle değildi. Onun ne olduğunu, ileride neler getireceğini, Gauss’un görüp görmediğini kesin olarak bilemiyoruz. Görmüş olacağı umulabilir.
Dedekind, 1854 yılında Göttingen’e yardımcı doçent olarak tayin edildi. Bu görevde dört yıl kaldı. Gauss, 1855 yılında ölünce Dirichlet Berlin’den Göttingen’e taşındı. Dedekind, Dirichlet’in önemli derslerini üç yıl izledi. Dirichlet’in sayılar kuramına ait eserine kendi cebirsel sayılar kuramını da on birinci bölüm olarak katarak bastırdı. Bu sırada mesleğine yeni başlayan Riemann’la dost oldu. Dedekind’in dersleri genel olarak hafifti. Yalnız iki öğrencisine 1857 ile 1858 yıllarında Galois denklemleri kuramı dersini verdi. Bu, Galois kuramının bir üniversitede resmi bir ders olarak verilişi ve öğrenciler tarafından ilk kez alınışıdır. Cebir ve aritmetikte, grup kavramının temel önemini ilk kavrayanlardan biri Dedekind’tir.
Dedekind, yirmi altı yaşındayken, Zürih Politekniği’ne 1857 yılında profesör olarak atandı. Beş yıl burada kaldıktan sonra, 1862 yılında Brunswick’e dönerek teknik okula profesör oldu. İşte, burada tam elli yıl gibi uzun bir süre profesörlük yaptı. Kummer gibi Dedekind de çok uzun süre yaşamış ve ölümünden pek az bir zaman öncesine kadar da matematikle uğraşmıştır. 12 Şubat 1916 günü öldüğünde, bir nesilden beri, bir matematik klasiği olmuş bulunuyordu. Dedekind’in dostu ve bazı eserlerinde onun izinden giden Edmund Landau, 1917 yılında onun anısına yapılan ölüm yıl dönümünde şöyle diyordu. “Richard Dedekind, yalnız büyük bir matematikçi değil, eski ve yeni tüm matematik tarihinin tam anlamıyla büyük olanlardan biri, büyük çağın son kahramanı, Gauss’un son öğrencisiydi. O da kırk yıldan beri klasik olmuştur. Onun eserlerinden yalnız biz değil, bizim öğretmenlerimiz ve öğretmenlerimizin öğretmenleri de çok şey öğrenmişlerdir.”
Dedekind, ölümü olan 1916 yılına kadar fikir tazeliğini ve vücut sağlamlığını korumuştur. Hiç evlenmemiştir. Romancı olarak tanınan kız kardeşi Julie’nin 1914 yılında ölümüne kadar onunla oturmuştur. Öteki kız kardeşi Matilda 1860 yılında öldü. Erkek kardeşi tanınmış bir hukukçu olmuştu. Yaşamının tüm çerçevesi hemen hemen bu kadarıyla biliniyor. Halbuki, onun irrasyonel sayıları kuruşunu, Dedekind kesimleri olarak tüm öğrenciler bilirler. Ölümünden önce de o kahramanlaşmıştı. Ölümünden on iki yıl önce, 4 Eylül 1899 günü öldüğünü yazmışlardı. Kendi anı defterine, o günü çok sıhhatli, sağlıklı ve yemekte Halle’li dostu Georg Cantor’la beraber geçirdiğini ve çok güzel ilmi bir konuda konuşarak yemek yediklerini yazıyordu.
Dedekind’in çalışmaları genel olarak sayılar kuramı üzerine geçmiştir. En önemlilerinden biri irrasyonel sayılarla olan Dedekind kesimidir. 1872 yılında “Süreklilik ve İrrasyonel Sayılar” adlı eseri basıldı. Kesim kavramı kısaca şudur. Bu kesim, rasyonel sayıları iki kümeye ayırır. Buna göre, birinci kümedeki tüm sayılar ikinci kümedeki sayılardan küçüktür. Eğer böyle bir kesim rasyonel bir sayıya karşılık gelmiyorsa, bu kesim bir irrasyonel sayı tanımlar. Bu kesime de karşı çıkıldığını hemen belirtelim. 12 Şubat 1916 yılında öldü.

Haberler
Sizlerin yorumu bizler için çok önemli lütfen yorum yazınız



6.Sınıf konuları eklenmiştir...

Kümeler
Olasılık
Örüntüler
Çarpanlar ve Katları
Kalansız Bölünebilme
Toplama ve Çarpma
Ondalık Kesirler
Doğrunun Yolculuğu



7.Sınıf konuları eklenmiştir...

Olasılık
Çemberler
Tam Sayılar
Oran Orantı
Permütasyon
Koordinat Sistemi



8.Sınıf konuları eklenmiştir...

Fraktallar
Gerçek Sayılar
Kareköklü Sayılar
Histogram Oluşturalım
Üçgende Açı Kenar
Öteleme Yansıtma Döndürme